5 research outputs found

    An advanced delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays

    Get PDF
    In this typescript, we concerned the problem of delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays. An advanced Lyapunov–Krasovskii functional are defined, which is in triple integral form. Combining the Lyapunov–Krasovskii functional with convex combination method and free-weighting matrix approach the stability conditions are derived with the help of linear matrix inequalities (LMIs). Some available software collections are used to solve the conditions. Lastly, two numerical examples and their simulations are conferred to indicate the feasibility of the theoretical concepts

    Electroless nano zinc oxide–activate carbon composite supercapacitor electrode

    No full text
    An electroless deposition process was used to synthesize the nanostructured zinc oxide (ZnO)–activated carbon (AC) as supercapacitor. The composite oxide was studied by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). The electrochemical performance of the nanocomposite was analyzed through cyclic voltammetry (CV) and AC impedance spectroscopy (EIS) in 0.1 M Na2SO4 as electrolyte. A specific capacitance 187 F g−1 at a scan rate of 5 mV s−1 was obtained using cyclic voltammetry (CV) and a nearly rectangular shaped CV curve was observed for the composite oxide. The supercapacitor was quite stable during charge–discharge cycling and exhibited constant capacitance during the long-term cycling. It also yielded a specific capacitance 171 F g−1 at 5 mA cm−2 with a high energy density of 21.9 Wh kg−1 and 4.2 kW kg−1 of power density. Due to unique structure of prepared ZnO–AC nanocomposite, it is a promising candidate for supercapacitor
    corecore